
SEPARATED AT BIRTH

Related implementations are coexisting,

syntactically different, interchangeable pieces of

code. Some examples:

Implementations of an interface in OOP.

(E.g., list and array variants of a sequence.)

Interchangeable software configurations.

(E.g., Cocoa vs. Win32 GUI targets.)

Related implementations are different: they target

different underlying data structures, hardware platforms,
or third party APIs.

Related implementations are similar: they implement

similar functionality and are indeed swappable: they
respect a common contract.

pop()
 if cursor == 0
 throw Empty;
 r = arr[cursor-1]
 cursor--;
 return r;

We propose a way to track the

underlying relationships among related

implementations:

Programmers explicitly map related code

elements together during the creation or

editing of an implementation.

A learner inputs the programmer’s actions and

builds a mapping of how the original
implementation relates to the new one.

We store the mapping long-term.

Uses of the mapping:

Help the programmer in the editing process by

incrementally suggesting future
mappings and changes based on

previous ones.

Determine whether a code change has

corresponding changes in the other

implementations.

Determine whether a new test has

corresponding tests in the other

implementations.

Suggest what the corresponding changes

and tests should look like.

pop()
 if list == null
 throw Empty;
 r = list.data;
 list = list.next;
 return r;

cursor == 0 <=> list == null
arr[cursor-1] <=> list.data
cursor-- <=> list = list.next

!""#$%&'#(#"%

)*+%

,#-./

0122#3%4"5-/2#

!"#$%"$ &$'($#))"$

Related implementations ... reunited!

marius nita & david notkin university of washington

marius@cs.washington.edu

