SEPARATED AT BIRTH

Related implementations ... reunited!

niversity ot washinagton

Related implementations are coexisting,

pop () pop ()

syntactically different, interchangeable pieces of 1T cursor == <> if list == null

de. S e throw Empty; throw Empty;
COUE. SOME EXxamples: r = arr[cursor-1] <€—>» r = list.data;

cursor--; <> list = list.next;
Implementations of an Interface in OOP. return r; return r;
(E.g., list and array variants of a sequence.)
Learner Programmer

Interchangeable software configurations.
(E.g., Cocoa vs. Win32 GUI targets.)

Suggest change

Related implementations are different: they target

different underlying data structures, hardware platforms,
or third party APIs.

Related implementations are similar: they implement

similar functionality and are indeed swappable: they Accept/Reject

respect a common contract.

We propose a way to track the Uses of the mapping:

underlying relationships among related

mplementations: Help the programmer in the editing process by

incrementally suggesting future

mappings and changes based on
Drevious ones.

Programmers explicity map related code

elements together during the creation or

editing of an implementation.
Determine whether a code change has

corresponding changes in the other
implementations.

A learner inputs the programmer’s actions and
builds a mapping of how the original

implementation relates to the new one.
Determine whether a new test has

corresponding tests in the other

cursor == <=> List == null | |
arr[cursor-1] <=> 1ist data implementations.
CUrsor-- <=> list = list.next

We store the mapping long-term.

[|
HT1IAJLO]1.e0
‘4 A 4

Suggest what the corresponding changes
and tests should look like.

